GCVE-BCP-02 - Practical Guide to
Vulnerability Handling and Disclosure

Contents

0.1

0.2
0.3

Practical Guide to Vulnerability Handling and Disclosure 2
0.1.1 Introduction e e 2
0.1.2 Definitions L e e 2
0.1.3 Rolesand Responsibilities 0. 3
0.1.4 Preparing for VulnerabilityHandling 4
0.1.5 Receiving and Handling VulnerabilityReports 6
0.1.6 Investigating and Resolving Vulnerabilities 8
0.1.7 Communicating with SubmittersandUsers 9
0.1.8 Coordinated Vulnerability Disclosure 11
0.1.9 PublishingAdvisories e 13
0.1.10 BestPractices @ . i i i i e e e e 15
References o o i i i i e e e e e e e 17
Acknowledgments e e 17
0.3.1 BCP-02Coordinators v v v v i i e e e e e e e 17
0.3.2 Contributions 17

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

0.1 Practical Guide to Vulnerability Handling and Disclosure

:‘ G CVE.eu

Version: 1.2

Status: Draft (for Public Review)
Date: 2025-07-28

Authors: GCVE Working Group

« BCPID: BCP-02

This guide is distributed and available under CC-BY-4.0.

Copyright (C) 2025 GCVE Initiative.

0.1.1 Introduction

Vulnerabilities in software can pose serious risks to users and organizations. A clear and effective pro-
cess for handling and disclosing security vulnerabilities maintains user trust and protects systems.

This guide provides actionable recommendations for GCVE GNA, software developers, open source
project maintainers, vendors, and organizations to manage vulnerability reports from discovery to
resolution and public disclosure. It is organized into key stages of a vulnerability’s life-cycle, includ-

ing:

+ preparation and receipt of a report,
+ investigation and remediation,
« communication and coordinated disclosure.

Overall, the guide establishes a transparent process that encourages responsible reporting and safe-
guards users.

0.1.2 Definitions

Vulnerability: A flaw or weakness in a software system that could be exploited to compromise the
system’s security or functionality.

2

https://creativecommons.org/licenses/by/4.0/legalcode

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

Vulnerability Report: Information provided about a potential vulnerability in a product or service. A
report typically includes details needed to reproduce the issue, such as affected components, steps
to trigger the bug, and expected vs. actual behavior.

Coordinated Vulnerability Disclosure (CVD): A practice where the reporter and the vendor collab-
orate privately to resolve a vulnerability before public disclosure. The vulnerability details are kept
confidential until a fix or mitigation is available, at which point an advisory is published. This coor-
dination helps protect users by ensuring vulnerabilities are not disclosed without a remediation in
place.

Advisory: A public notice that a vulnerability has been identified and fixed. Advisories are typically
published by the vendor to inform users about the issue’simpact, affected versions, and how to obtain
the patch or mitigation.

0.1.3 Roles and Responsibilities

Effective vulnerability handling involves several stakeholders with distinct roles. Defining responsibil-
ities for each role helps ensure accountability and clarity during the process:

« Submitter or Reporter (Security Researchers or Users): The person or team who discovers a
potential vulnerability and reports it to the appropriate party (usually the vendor or maintainer).
This could be an independent security researcher, a user, a member of the development team,
or a third-party analyst. Submitters or reporters are expected to investigate and disclose vul-
nerabilities in good faith.

« Submitter/Reporter and Vendor Interaction: The submitter or reporter should follow the ven-
dor’s reporting guidelines, avoid publicizing the issue before giving the vendor a chance to fix it,
and provide sufficient detail to reproduce the problem. Ethical reporters respect privacy and le-
gal boundaries during testing, and they do not exploit the vulnerability for personal gain. When
participating in a bug bounty program, they adhere to its scope and rules.

+ Vendors / Maintainers: Vendors and open source project maintainers act on vulnerability re-
ports promptly and professionally. They have a clear intake mechanism (e.g. a security contact
email or form), acknowledge and maintain open communication with reporters, prioritize, ana-
lyze and fix issues based on risk, and communicate updates about confirmed vulnerabilities and
their fixes to all users. Vendors must also avoid hostile responses like threatening legal action
against those who report issues in good faith.

+ Product Security Team (PSIRT): An organization’s PSIRT or designated security response
team, when present, coordinates the entire handling of the vulnerability response process.
They receive and triage incoming reports, involve relevant development teams, track remedia-
tion progress, and ensure communication flows to reporters and management. The PSIRT also
works on preparing advisories and post-remediation follow-ups. In an open source context,

3

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

the PSIRT may simply consist of the core maintainers or a subset of project contributors who
handle security issues.

+ Developers and QA Engineers: Once a report is validated, developers are responsible for de-
veloping the code fixes or mitigations. QA or testing teams (or in smaller projects, the devel-
opers themselves) must test the fixes to confirm the vulnerability is resolved and that no new
issues are introduced. They also verify that the fix doesn’t negatively impact functionality. De-
velopment and QA staff should treat security fixes with high priority and follow secure coding
practices to prevent re-introduction of similar flaws.

+ Secure Coding Practices: Secure coding is the practice of developing computer software in
such a way that guards against the accidental introduction of security vulnerabilities. Defects,
bugs and logic flaws are consistently the primary cause of commonly exploited software vulner-
abilities.

« Coordinators (Third-Party Facilitators): In some cases, a coordinator such as a Computer
Emergency Response team (CERT) or a vulnerability broker can ensure responsible information
sharing and awareness among multiple vendors impacted by a vulnerability. They facilitate in-
formation sharing when the same issue affects multiple vendors or when a reporter and vendor
require a neutralintermediary. Coordinators help synchronize remediation timelinesamongall
affected parties and can assist in broader communications, such as publishing a joint advisory.

+ Users/Customers: While users are the beneficiaries of the process rather than active partici-
pants in handling, they are ultimately responsible for applying updates and mitigations that
vendors release. Vendors should simplify the process for users to learn about security updates
and take action. Users, on their part, should stay informed via the channels the vendor pro-
vides (mailing lists, security pages, etc.) and promptly install security patches to protect their
systems.

By clearly identifying these roles and expectations, an organization or project can ensure well-
managed contributions towards swiftly resolving vulnerabilities when they arise.

0.1.4 Preparing for Vulnerability Handling

Preparation is critical before any vulnerability reports come in. Having a plan and resources in place
will make the handling process far more efficient and effective. Key preparation steps include:

« Establish a Vulnerability Disclosure Policy: Create a clearly written document that outlines
how people should report vulnerabilities to you and what they can expect in return. This policy
should be easy to find and may often be a publicly accessible policy on a website ora SECURITY
.md file in open source projects. It should specify the preferred contact method and provide
links to a dedicated security email address or web form. The policy should detail what informa-
tion to include in a report and outline your commitment to researchers. These commitments

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

should capture any expectations for communication, acknowledgement, and not pursuing le-
galaction for good-faith research. If you have a bug bounty program or reward offering, mention
how it works and the scope of vulnerabilities covered. Also include any safe harbor statement
reassuring researchers that if they follow the guidelines, they will not be penalized.

+ Designate a Security Response Team: Assign specific individuals from your organization or
project team to the defined roles and responsibilities for handling vulnerability reports. These
may be members of the security or engineering team in a company or maintainers in an open
source project. These roles should provide for receiving, assessing, and prioritizing reports, fix-
ing the vulnerability, and communicating with stakeholders including the reporter, vendors,
and users. Make sure these individuals know their roles and have the authority to coordinate
fixes across development teams.

+ Define an Internal Workflow: Establish what to do when a report arrives:

- Communicate issue Routing: Everyone in the organization should know how to escalate a
security issue to the response team. For example, even customer support or developers
who accidentally receive a report should know where to forward it.

- Set Up Secure Communication Channels: Provide secure and easy-to-use reporting chan-
nels. Commonly, a security contact email (e.g. security@example.com) should be com-
bined with a public PGP/GPG key so that sensitive vulnerability details can be encrypted
in-transit. Web-based submission forms or ticket systems that restrict reports from pub-
lic view and use encryption (HTTPS) can also provide a secure channel. If using an issue
tracker like those in GitHub or GitLab, instruct reporters to not post vulnerabilities in pub-
lic tickets; instead provide a private reporting mechanism or use the platform’s private
disclosure feature if available.

- Develop Internal Procedures and Guidelines: Document how your team will handle vulner-
ability reports step by step. This internal guide should include at a minimum the following
items:

- Document triage criteria. Provide an internal guide for how to prioritize reports. Severity
rating systems like CVSS can help categorize issues.

- Publish target timelines. Each step in handling process should have a commitment for
resolution, such as acknowledging report receipt within two business days and providing
a plan for resolution within one week. Critically, a commitment should be posted about
resolving vulnerabilities within a specific timeframe.

- Establish the technical process: Identify how you will analyze vulnerability reports, de-
velop and test fixes, and deploy patches.

- Maintain accountability: Set up a controlled and auditable system to track vulnerability
cases from report to resolution - this could be a special project in your issue tracker or

5

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

a simple internal spreadsheet/ticket system. Tracking helps ensure nothing falls through
the cracks and allows management to review metrics like response times.

+ Practice and Training: Treat vulnerability handling as a process that benefits from practice.
Run simulations or tabletop exercises that reinforce what workflows to follow when someone
reports a critical software bug. Ensure the response team is familiar with the procedures and
tools, as many items like encrypted emails and coordinating CVE requests are not frequently
used. Train developers on secure coding and common vulnerability types so that they can re-
spond more effectively and ideally preventissues. Commit to continuousimprovement through
updating your plan periodically based on these dry runs or any real incidents.

+ Resource Allocation: Management should allocate adequate resources for vulnerability han-
dling. This means having people with time to investigate and fix security issues on short notice
and possibly budgeting for external help if needed. For instance, payments for penetration test-
ing or bug bounties may require financing. Without proper resourcing and clear management
support, even a well-documented process can falter. Make sure everyone prioritizes security
bug fixes as a part of the development lifecycle rather than as an afterthought.

Advance preparations create a foundation that makes the vulnerability handling workflow run
smoothly. It signals to researchers and users alike that your organization takes security seriously and
can readily respond.

0.1.5 Receiving and Handling Vulnerability Reports

Vulnerability reports require effective stewardship and communication regarding their resolution to
maintain trust and accountability with the research and user communities. Key management prac-
tices include:

+ Logging and Tracking: As part of handling incoming reports, log each report in your inter-
nal tracking system. Record details such as the date received, reporter name/contact, affected
product, a short description of the issue, its status (e.g. “under investigation”, “fix in progress”),
and any relevant deadlines. For instance, if a reporter has indicated they intend to publish af-
ter 90 days, note that date. Tracking helps you manage multiple reports at once and ensures
accountability. It also creates a record useful for post-incident review and improving your pro-
cess over time.

« Acknowledge Receipt Quickly: The intake and initial response sets the tone for the entire
handling process. Upon receiving a vulnerability report, assign a tracking ID for future corre-
spondence and following the report throughout verification and resolution. Acknowledge the
report as soon as possible - ideally within 24-48 hours. A simple receipt confirmation that indi-
cates a planned review assures the reporter that you value and will act upon their effort. This
can prevent a frustrated researcher from going public prematurely.

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

+ Ensure Confidentiality: Treat all vulnerability reports as sensitive information. Restrict knowl-
edge of the details to the people who need to know (your security team, relevant developers,
management as appropriate). If a report comes in through a public channel by mistake (e.g. a
public bug tracker or social media), move the conversation to a private channel promptly and
ask the reporter to take down public details if possible. This limits exposure of the vulnerability
until a fix is ready and reduces the window of opportunity for malicious actors.

« Initial Triage (Severity and Scope Assessment): Your security response team should quickly
triage the report. Determine what product the vulnerability affects and whether it involves a
core component or optional module. Identify the potential vulnerability type and its severity. A
defined severity scoring system like CVSS can isolate the severity of specific vulnerabilities sepa-
rately from their risk (e.g. does it allow remote code execution, information disclosure, denial of
service, etc.). Also assess the scope considering the number of users likely affected. During this
phase, it’s fine to ask the reporter for clarification or additional details if needed to understand
the issue. Based on this initial assessment, you can prioritize the issue. For example, critical
issues trigger an emergency response whereas low-risk issues go into the normal development
queue.

+ Verify the Report: Before immediately developing a fix, reproduce and verify the issue to con-
firm that it is a genuine vulnerability. This may involve your engineers replicating the steps
provided by the reporter or creating a proof-of-concept exploit in a safe test environment. Ver-
ification should also document which versions/configurations are affected and what the exact
impactis (e.g. can an attacker actually steal data, or is it a minor glitch?). If the report cannot be
verified or appears to be incorrect, involve the reporter - let them know if additional evidence
is needed or explain why it might not be considered a security issue. In some cases, what the
reporter found might be a known issue or expected behavior; communicate that respectfully if
so.

+ Duplicate or Out-of-Scope Issues: If you discover that a reported issue duplicates something
already reported or affects a component outside your responsibility (for example, a bug in a
third-party library), explain the situation to the reporter. For duplicates, thank them and inform
them of theissue’s previous resolution. If possible, indicate the tracking number or status of the
existingissue. For third-party issues, you might need to act as a coordinator and relay the report
to the third-party vendor or to an appropriate coordinating center. Similarly, keep the reporter
advised of this step. If the issue is in an older end-of-life product version that you no longer
support, let the reporter know the product is not supported. However, if the vulnerability is
critical, you might still consider informing users or updating documentation about the risk.

+ Ongoing Communication: Throughout the handling of the report, maintain communication
with the reporter. After the initial acknowledgement, update them when verification is done
to confirm results from the verification or to ask for more information to reproduce the issue.
Even if you don’t have significant progress, a periodic update (e.g. “We are still working on a fix,

7

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

thank you for your patience”) can reassure reporters. Communication provides transparency
and communicates your commitment towards resolving vulnerabilities. This collaborative ap-
proach keeps the process coordinated and reduces the likelihood of surprise disclosures.

Receiving and handling reports properly builds trust with researchers. If they see you are responsive
and professional, they are more likely to continue reporting to you rather than announcing issues
publicly out of frustration. It also signals to your user community that you can deal with security
issues seriously and efficiently.

0.1.6 Investigating and Resolving Vulnerabilities

Once a vulnerability report has been validated, begin investigating its root cause and implementing a
resolution. During this phase development and security teams work together to eliminate the weak-
ness. Important steps in investigation and resolution include:

+ In-Depth Analysis: The team should thoroughly investigate the vulnerability. Root cause eval-
uations determine which part of the code or design is at fault. Understanding root cause is vital
not only to fixing the current bug but also to identifing any related issues. Investigate if similar
components might have the same flaw and whether the vulnerability has resided throughout
other versions. Also, analyze the impact achieved by an attacker exploiting the vulnerability un-
der different conditions. This helps in assessing severity and priority for the fix. For instance, a
vulnerability allowing full system compromise is critical, whereas one causing a minor informa-
tion leak might be lower priority). Formal severity scoring, like CVSS, can be useful to quantify
impact and guide prioritization.

 Developing a Fix or Mitigation: Task the appropriate development team to create a remedi-
ation for the issue. This often means writing a patch to the software’s code. If a full fix might
take too much time, consider if a mitigation or workaround could reduce the interim risk. For
example, instructing users to disable a vulnerable feature or providing a configuration change
that blocks an exploit might be a temporary measure. Balance speed and quality when devel-
oping fixes - urgent fixes should be expedited, but even a quick fix needs at least some testing
to ensureitresolves the problem without causing regressions. In extreme cases involving an ac-
tively exploited critical vulnerability, a vendor might release a temporary fix or even temporarily
take a service offline until a proper patch is ready. These emergency measures underscore the
importance of having a robust fix as soon as possible.

+ Testing the Fix: Thorough testing verifies that the fix indeed closes the vulnerability and does
not introduce new bugs or break functionality. Testing on all relevant platforms or versions of
the software ensures consistency. Where practical, involving the original reporter in testing a
patch or a secure test build can provide valuable confirmation that the vulnerability is resolved
from an attacker’s perspective. This also further engages the reporter in the process. If the re-

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

porter is not available for testing or the disclosure is sensitive, rigorous internal testing should
leverage initial report descriptions, root causes and conditions identified during verification
and development, and edge cases that could be related to the vulnerability.

+ Collateral Cleanup: Investigating a vulnerability might reveal other issues or similar vulnera-
ble code elsewhere. Take this opportunity to clean up related problems. For example, if the
issue was a result of an insecure library or dependency, update that dependency across your
project. If the root cause was a specific coding pattern, a quick scan of the codebase can reveal
instances of that pattern. This proactive approach can prevent future vulnerabilities. It’s also
a good practice to check if any telemetry, incident reports, or logs provide evidence that the
vulnerability was exploited. If so, this necessitates incident response.

» Decision on Public Release Timing: Plan when and how the fix will be released. Typically, you
will coordinate the release of the patched software with the publication of a security advisory
(see the sections on Communication and Publishing Advisories). If you have a regular release
schedule, decide if this warrants an out-of-cycle emergency release or if it can wait for the next
planned update. Security patches for critical issues often justify quicker releases. If the vulnera-
bility is not very risky, bundling it in a scheduled release might be acceptable. In all cases, plan
to release the fix before or at the same time as disclosing the vulnerability details to the public,
to minimize user exposure.

+ Documenting the Fix: When releasing the fix, prepare internal documentation of what was
done. Thisincludes updating any internal security knowledge base about the nature of the issue
and how it was fixed for future reference. If a CVE (Common Vulnerabilities and Exposures) or
GCVE ID is needed (and not already assigned by a reporter or coordinator), you might request
one at this stage. Many open source projects can get CVEs via CNA coordination or GCVE via
GNA or through portals like GitHub Security Advisories. One or more ID will be referenced in the
public advisory to track the issue in vulnerability databases.

Diligent investigation and efficient remediation eliminate a vulnerability’s threat. It’s important to
keep momentum throughout resolution - lengthy delays in fixing known vulnerabilities leave users
at risk. Aim for a balance among scope, severity, and risk: address the issue as fast as possible, but
also correctly and safely. Once a fix is ready and verified, begin preparations to communicate both
the fix and disclose the vulnerability.

0.1.7 Communicating with Submitters and Users

Communication connects the entire vulnerability handling process. Its management focuses on the
vulnerability reporter and the users or customers of the affected product.

« Communication with the Reporter: From the moment a report is received until after the issue
is resolved, it’s best practice to keep the reporter informed and engaged. Key communication

9

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

milestones with reporters include:

« Acknowledgment: As noted earlier, confirm to the reporter that you received their report and
provide a reference ID for it. Thank them for alerting you.

« Verification Results: After you investigate, let the reporter know the outcome. If you verified
the vulnerability, say so and that you’ve begun remediation efforts. If you could not reproduce
the issue or determined it’s not a vulnerability, provide that feedback. Be tactful and appre-
ciative - even if a report turns out not to be a valid security issue, acknowledge the effort and
explain your reasoning to avoid discouraging future reports.

+ Updates During Remediation: While working on thefix, send periodic updates. Although these
do not need to share full technical details, they should inform reporters of progress towards
identifying root causes, developing patches, and testing fixes. If there are delays or unforeseen
complications, be honest about them and your continued work towards resolution. Regular
communication keeps the reporter on your side and maintains trust.

+ Coordination on Disclosure: As the fix nears completion, coordinate the public disclosure with
the reporter. If you plan to publish an advisory, let them know the expected timeline. If the re-
porter had initially set a disclosure deadline, update them if you need more time and negotiate
if necessary. Most researchers are willing to extend time if they see progress and good faith
from the vendor. Discuss whether the reporter would like to be credited in the advisory or if
they prefer anonymity. Also, agree on the date and time of public disclosure. Ideally, release
the advisory simultaneously with or shortly after releasing patched software so that users can
immediately protect themselves.

» Post-Resolution Follow-up: After the fix is released and the advisory is public, it’s courteous
to follow up with the reporter. Thank them again for their responsible disclosure and perhaps
share any lessons learned orimprovements you plan because of their report. Keeping a positive
relationship can lead to the reporter helping you again in the future or becoming an advocate
for your project’s security posture.

Throughout all communications with reporters, maintain a professional, collaborative, and appre-
ciative tone. Remember that the broader security community will judge vendors by how they treat
researchers - being responsive and fair will enhance your reputation.

« Communication with Users and Stakeholders: Users of your software need to know about
vulnerabilities in order to protect themselves. However, user communication is typically done
after or at the time a fix is available to avoid alerting attackers. Key points for user communica-
tion include:

« Security Advisories: As detailed in the next section, a security advisory is the primary vehicle
to inform users. Ensure the advisory is easily accessible - for example, via a dedicated security
page on your website, a mailing list announcement, release notes, or a blog post on your official

10

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

blog. In an enterprise setting, you might also directly email affected customers or issue a press
release for very critical issues.

+ Urgency and Guidance: Clearly communicate how urgent the issue is and what users should
do. Ifit’s a critical vulnerability, the advisory should encourage immediate updating. If there
are mitigations or workarounds, spell them out so users who can’t patch immediately can still
reduce risk. Always prefer actionable guidance - for example, “Upgrade to version 4.2.1 or later,
which contains the fix” or “Apply the patch linked here” or “As a temporary workaround, disable
the XYZ feature until you can update.”

« Clarity and Honesty: Avoid downplaying the issue or burying the information. Be transparent
about what could happen if the vulnerability is exploited but also avoid excessive fear. Use a
factual and helpful tone to describe the nature of the vulnerability and its impact in general
terms. For example, note, “A buffer overflow in image processing library could allow code exe-
cution and allow an attacker to potentially take control of the application”. Clarify the affected
versions and which versions contain the fix. Explain if only certain configurations are vulnerable
So users can assess their own risk.

+ Support Channels: Provide users with a way to get help or ask questions about the issue. This
could be your normal support channel or a forum where they can seek guidance if the update
process is unclear. Enterprise customers, for example, might have account managers to con-
tact. Open source projects might use their issue tracker or mailing list for follow-up questions.
Monitor these channels after disclosure to clarify any confusion.

+ Internal Stakeholders: Inform internal groups as needed. Customer support teams should be
briefed on the issue as soon as or slightly before it’s public so they can handle inquiries. Sales or
account reps might need advance notice if they are dealing with customers who require prompt
notification of security issues. In some cases, such as when the vulnerability must be reported to
regulators under certain laws, legal or compliance teams should know details of the vulnerabil-
ity and its fix. Having a prepared statement or FAQ for internal teams helps ensure a consistent
message.

Effective communication promotes a responsive, transparent, and empathetic relationship with both
reporters and users. It helps prevent misunderstandings from reporters feelingignored and users lack-
ing information about security issues. Good communication practices ultimately lead to a smoother
coordinated disclosure and a safer environment for everyone.

0.1.8 Coordinated Vulnerability Disclosure

Coordinated Vulnerability Disclosure (CVD) is the practice of working together with all involved parties
to handle a vulnerability privately until a public disclosure is made at an appropriate time. Embrac-
ing CVD principles is highly recommended, as it strikes a balance between security (giving vendors

11

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

time to fix issues) and transparency (eventually informing the public). Here’s how to approach coor-

dinated disclosure:

« Private Collaboration First: When a vulnerability is reported, both the reporter and the vendor
agree to address it confidentially before making details public. The vendor commits to investi-
gate and fix the issue while the reporter agrees to withhold public disclosure for a reasonable
period or until the fix is released. This cooperation ensures users are not put at undue risk by
early disclosure of the bug.

+ Setting a Disclosure Timeline: An essential aspect of CVD is agreeing on how long the vendor
can take to produce a fix before the vulnerability information might be revealed. Many organi-
zations follow an informal 90-day or 60-day guideline, which means that the researcher might
publicly disclose the vulnerability anyway if a fix isn’t ready after the elapsed time. However,
timelines can be flexible if both parties communicate. As a vendor, try to estimate and propose
atimeline to issue a patch based oninitial risk assessments and complexity of the vulnerability.
If you realize you need more time, inform the reporter as soon as possible and provide justifi-
cation. Researchers often appreciate updates and can grant extensions if progress is evident.
The key is to avoid leaving the reporter without guidance; lack of communication is a primary
reason researchers go public out of frustration.

+ Involving a Coordinator: Sometimes involving an impartial third party (coordinator) is use-
ful or necessary. For example, if the reporter can’t get a response from the vendor, they might
reach outto a CERT or other coordinator to alert the vendor. Conversely, a vendor receiving a re-
port about another vendor’s product or a library with a flaw should pass that information to the
right party and possibly involve a coordinator for multi-party issues. In multi-vendor situations,
such as a vulnerability in an open source component that affects many downstream projects,
coordination ensures that everyone gets critical information needed to fix their part and dis-
closure can happen jointly. Multi-party coordinators can establish a communication channel
through mailing list or calls with all vendors and set ground rules for information sharing and
the disclosure date. Organizations like CERT/CC or industry groups often help orchestrate this.

« No-Fix Scenarios: Ideally, every reported vulnerability is fixed before disclosure. However, a
vendor may decide not to fix a reported issue after deeming it an acceptable risk or deciding
they won'’t fix it due to architectural reasons. In coordinated disclosure, the vendor must com-
municate this decision to the reporter. They may still choose to disclose it publicly if they be-
lieve users should know. As a vendor, you should explain your reasoning in the advisory if this
happens. Not fixing is generally discouraged for any significant security problem. Coordinated
disclosure in such cases might break down, and the reporter could publish their findings. To
maintain goodwill, these situations should be handled with transparency and respect for the
researcher’s perspective.

« Handling Leaks or Early Disclosure: Despite best efforts, sometimes vulnerability details leak

12

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

or areporter publishes early. If vulnerability information becomes public before a fix is out, shift
into incident response mode. Quickly assess the risk to users and consider releasing mitigation
instructions or interim patches. Communicate openly with users about the situation - even if
it’s uncomfortable, it’s better to acknowledge an early disclosure and provide guidance than to
stay silent. Afterward, analyze what went wrong in the coordination and root causes for early
disclosure orinformation leakage. Then, improve the process. These scenarios underscore why
establishing trust and acting swiftly on reports is so important in CVD.

In essence, coordinated vulnerability disclosure is about trust and timing. Vendors must show re-
porters that they take issues seriously and will act, and reporters must give vendors the opportunity
toresolveissues for the greater good of users. By coordinating, you ensure that when the world learns
of a vulnerability, there is already a solution available - this greatly minimizes the potential harm
from that vulnerability. CVD has become the industry standard approach and is a cornerstone of this
guide’s recommendations.

0.1.9 Publishing Advisories

Publishing a security advisory is the capstone of the vulnerability handling process. An advisory
should explain what the issue is, who is affected, and how it can be fixed. These answers support
a public record of the vulnerability and its fix, and it informs all users about what action to take. A
well-crafted advisory considers the following in its timing and content.

« Timing of Advisory Release: Coordinate the advisory release with the availability of the fix.
Ideally, the advisory should be published at the same time (or very shortly after) you release the
patched software version. This way, users reading the advisory can immediately take action to
secure their systems. Never significantly precede the fix with an advisory to avoid tipping off
attackers before a fix is available. Conversely avoid delaying an advisory long after the fix, as
users might not realize a security update isimportant without the context. In cases where afix s
rolled out silently (e.g. via auto-update), an advisory should still follow to document the issue.

« Summary: Provide aA brief description of the vulnerability and its impact. For example, “A
buffer overflow in the image parsing library could allow an attacker to execute arbitrary code
on versions 1.2 through 1.4 of the application.”

« Affected Products/Versions: List the specific product names and versions that are vulnerable.
Be as precise as possible (e.g. “Versions 1.0.0 to 1.4.2 are affected; version 1.4.3 and above con-
tain the fix”). If older, unsupported versions are also affected, mention them as well but note if
they are not patched.

« Solution (Fixed Versions): State the version numbers or update that fixes the issue. If the fix is
available as a patch, hotfix, or commit, provide links or instructions on how to obtain and apply
it. In open source projects, this might be a reference to a specific commit or a new release tag.

13

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

Workarounds/Mitigations: If applicable, describe any temporary measures users can take if
they cannot immediately apply the fix. For example: “Until you can update, you can disable
the image parsing feature by doing X,” or “Configure the firewall to block port Y to mitigate the
issue.” Not all advisories have mitigations, but include them if they exist.

Acknowledgment: Credit the reporter or others involved in discovering the vulnerability if they
consent to be named. This typically goes near the end: e.g. “We thank Jane Doe for reporting
this issue responsibly.”

CVE or GCVE or any Tracking ID: If a CVE or GCVE ID has been assigned to this vulnerability,
include it. CVEs or GCVE are useful for indexing the issue in global databases and for users who
track vulnerabilities via scanning tools. If you don’t have a CVE or GCVE ID, you should include
aninternal tracking number instead of nothing at all - CVEs or GCVE are not strictly required but
are standard for notable vulnerabilities.

Advisory Content - Additional Information: In addition to the basics, including more details
can be helpful:

- Severity/Rating: Indicate how severe the issue is (Critical High/Medium/Low) to help
users prioritize the update. If you use CVSS, provide the score and vector string.

- Discovery Timeline: Itis a best practice to include a timeline of events and describe when
the issue was reported, when it was fixed, and when the advisory is published. This trans-
parency can demonstrate your adherence to a responsible process and give credit to the
timeline of the reporter’s cooperation.

- Technical Details: Depending on your audience, you might add a section with more tech-
nical explanation of the vulnerability. This can help advanced users or peer reviewers un-
derstand the nature of the flaw. It’s also useful for historical record and for other develop-
ersto learn. If the vulnerability is complex, you might summarize how it was found or how
it works. You may omit deep technical details if you fear it might aid exploit development.
However, sharing details of a vulnerability after a patch is issued is considered good for
transparency and education.

- References: Link to any relevant references. For example, if this issue was discussed pub-
licly or if it’s related to a known vulnerability class, you might reference external docu-
ments or prior advisories.

- Update Instructions: If updating is non-trivial and requires configuration changes or a
series of steps, outline the steps or link to upgrade documentation.

- Format and Distribution: Present the advisory in a format accessible to your users. Many
organizations use plain text or Markdown for advisory documents and sometimes publish
advisories in HTML on websites. Use a consistent template so users know where to find
information. Consider distributing the advisory through multiple channels:

14

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

* Post it on your official website (preferably in a dedicated Security Advisories section).
Amachine-parsable format should be available to facilitate the discovery and process-
ing of vulnerabilities. This can be achieved with open source tool such as vulnerability-
lookup.

* Send it to a mailing list dedicated to announcements or security updates.

* Publish it via your project’s blog or news section.

* Share on forums or community channels where users gather.

* For open source projects, you might also use your source repository’s advisory fea-
tures (e.g. GitHub Security Advisory) which can send alerts to users of the project.

Ensure that once published, the advisory remains available indefinitely for reference.
Don’t take down old advisories; they serve as a historical security record.

+ Post-Publication Monitoring: After publishing, monitor the reaction. Be ready to answer ques-
tions from users or the media. If any detail in the advisory is found to be incorrect or unclear,
issue a correction or update the advisory. Sometimes after release, additional research may
discover that the vulnerability affected additional versions or that the fix had a bug. These dis-
coveries and their subsequent fixes require an update to the advisory. Monitor for any signs of
public exploitation now that the vulnerability is published. If something arises, you might need
to alert users or provide additional mitigation advice.

Publishing advisories is a fundamental duty to your user base. A well-handled advisory not only helps
users protect themselves but also builds your reputation for transparency. Stakeholders from enter-
prise customersto open source users will appreciate clear and timely advisories. Remember, acknowl-
edging security issues publicly does not mean your software is less secure. On the contrary, it shows
you take security seriously and deal with issues head-on, which ultimately increases user trust.

0.1.10 Best Practices

The following best practices reinforce the guidance above and provide a quick checklist for building
a robust process:

« Encourage Responsible Reporting: Make it easy for people to report vulnerabilities to you.
Publish clear instructions and promise a supportive response. Consider using a security.txt file
on your website or repository so automated tools and researchers can find your contact info.
Provide a way to encrypt sensitive reports (PGP key). Prominently assure researchers that you
welcome reports and will not take legal action for good-faith efforts.

+ Respond and Remediate Promptly: Time is of the essence in security. Strive to acknowledge
reports quickly and fix critical issues as fast as possible without sacrificing quality. Even if a
bug is complex, make interim plans and keep all parties informed. A slow response can resultin

15

https://www.vulnerability-lookup.org/
https://www.vulnerability-lookup.org/
https://github.com/advisories

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

public disclosure without a fix, which puts users at risk. Treat researchers as partnersin security.
Be polite, thankful, and honest in all interactions.

+ Protect Sensitive Information: Handle vulnerability details on a need-to-know basis until dis-
closure. Use encrypted channels for communications. Limit public discussion of the issue un-
til the advisory is released. If working with multiple organizations, use Non-Disclosure Agree-
ments (NDA’s) or trusted channels as needed to prevent leaks. Always error on the side of cau-
tion with sensitive information. Use a clear classification standard, while distributing the infor-
mation or interacting with third-parties, such as the Traffic Light Protocol (TLP).

« Coordinate and Collaborate: Follow coordinated disclosure principles. Work with reporters on
timelines. If multiple vendors are involved, take initiative in reaching out to coordinate a joint
response. Share information with platform owners or other stakeholders if the vulnerability
could extend to them. Security is a team effort; collaboration can be the difference between a
minor contained issue and a major public incident.

« Learn and Improve: After each vulnerability case review process steps that went well or could
be improved. Implement improvements to your systems and practices based on these obser-
vations. Each vulnerability is also a lesson for developers: share the root cause and teach the
team how to avoid that class of bug in the future. Over time, your software should get more
secure and your handling process more efficient.

« Stay Informed on Security Practices: The security landscape evolves. Keep your vulnerability
handling aligned with current best practices including industry standards and new guidelines
from organizations like CERT/CC, FIRST.org, or NIST. Participate in security communities or fo-
rums to learn from others’ disclosure experiences. For open source maintainers, many organi-
zations and groups provide resources and forums to discuss disclosure challenges unique to
open source - leveraging these can strengthen your own procedures.

+ Legal and Regulatory Compliance: Be aware of any legal requirements regarding vulnerabil-
ity disclosure that apply to you. Certain industries or regions may have laws about reporting
breaches or vulnerabilities to regulators. While this guide focuses on the process itself, always
ensure your legal counsel is in the loop if a vulnerability could trigger regulatory obligations.
Also, having a clear policy with safe harbor language can protect both you and researchers by
setting mutual expectations.

+ Recognize and Reward: When possible, acknowledge the contributions of those who help im-
prove your security. Publicly credit researchers (with their permission) in advisories or on a Hall
of Fame page to encourage others to report. If resources allow, consider offering rewards.

By adhering to these best practices, organizations and open source projects can create a robust
ecosystem for vulnerability handling and disclosure. The result is a win-win: security researchers
have confidence that reporting issues will lead to constructive action, and users benefit from timely
fixes and open communication about the security of the products they rely on.

16

https://www.first.org/tlp/

GCVE-BCP-02 - Practical Guide to Vulnerability Handling and Disclosure

By following the guidance in this document, software maintainers and organizations can better pro-
tect their users and improve their products’ security over time. Vulnerability handling and disclosure
is an ongoing commitment - one that, when done right, significantly reduces risk and builds trust
in the software. It transforms security vulnerabilities from potential disasters into opportunities for
learning and strengthening the resilience of our systems.

0.2 References

« OWASP - Vulnerability Disclosure - OWASP Cheat Sheet

+ CIRCL - Coordinated Vulnerability Disclosure (CVD) Policy

+ NIST - Recommendations for Federal Vulnerability Disclosure Guidelines

+ Secure Coding - Taylor, Art; Brian Buege; Randy Layman (2006). Hacking Exposed J2EE & Java.
McGraw-Hill Primis. p. 426.

« |ETF Internet-Draft - Responsible Vulnerability Disclosure Process draft-christey-wysopal-vuln-
disclosure-00

0.3 Acknowledgments

0.3.1 BCP-02 Coordinators

+ Alexandre Dulaunoy, CIRCL
+ Sascha Rommelfangent, CIRCL

0.3.2 Contributions

The GCVE initiative gratefully acknowledges the substantial contributions from the following individ-
uals:

Cédric Bonhomme

Xavier Claude

Matthew J. Harmon

Quentin Jerome

17

https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://www.circl.lu/pub/coordinated-vulnerability-disclosure/
https://csrc.nist.gov/pubs/sp/800/216/final
https://en.wikipedia.org/wiki/Special:BookSources/0-390-59975-1
https://en.wikipedia.org/wiki/Special:BookSources/0-390-59975-1
https://datatracker.ietf.org/doc/draft-christey-wysopal-vuln-disclosure/
https://datatracker.ietf.org/doc/draft-christey-wysopal-vuln-disclosure/

	Practical Guide to Vulnerability Handling and Disclosure
	Introduction
	Definitions
	Roles and Responsibilities
	Preparing for Vulnerability Handling
	Receiving and Handling Vulnerability Reports
	Investigating and Resolving Vulnerabilities
	Communicating with Submitters and Users
	Coordinated Vulnerability Disclosure
	Publishing Advisories
	Best Practices

	References
	Acknowledgments
	BCP-02 Coordinators
	Contributions

